# Integrated Groundwater Management: which data is needed for better management?

#### BJØRN KAARE JENSEN

GEOLOGICAL SURVEY OF DENMARK AND GREENLAND (GEUS), LOT 2 PROJECT MANAGER

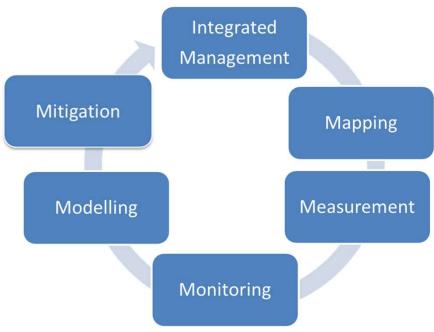
CEWP WEBINAR SERIES

EVENT ON IMPROVING WATER QUALITY MANAGEMENT VIA BETTER DATA

TEAMS ONLINE, 24 May 2022






## Integrated groundwater management – multiple purposes

- Ensure supply of safe and enough drinking water for various users (household, agriculture, industry, recreational, etc.
- Protect against contamination from point and diffuse sources
- Ensure compliance with WFD in terms of maintenance and/or restoring environmental acceptable standard of water bodies
- Water cycle management in relation to climate change issues





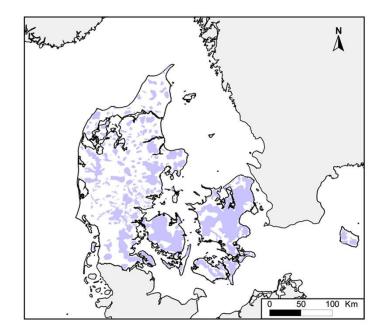
## Integrated groundwater management in DK the 5 Ms







### **Elements of integrated groundwater management**


- Identification and Mapping of groundwater aquifers to be included in management schemes
- Mapping of contaminant sources within the groundwater zones of interest
- Identification of other pressures (climate change etc.) within the groundwater zones
  of interest
- Groundwater risk assessment and risk based groundwater monitoring
- Groundwater modelling for prediction of anthropogenic and geogenic impacts on groundwater resources and defining action plans
- Action plans for groundwater restoration and protection
  - Groundwater restoration/remediation
  - Water saving and reuse
  - Regulatory protective measures, including abstraction permits
  - Incentives (financial and compensation mechanisms)





### The Groundwater mapping programme in Denmark

- The national groundwater mapping program 1999 --> 2015 financed by water consumers paying extra 9 EUR cents per m<sup>3</sup> of water
- Total cost 360 million EUR
- Particularly valuable water abstraction areas (shown in purple) are mapped
- They cover about 40% (~17.400 km²) of the land area of Denmark

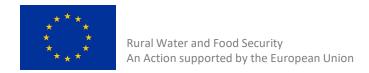






### Mapping of groundwater contaminant sources

#### **Point sources**

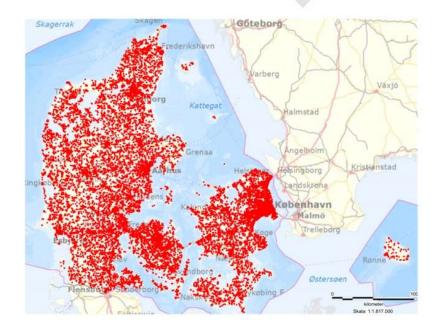

Industrial sires, landfills, storage facilities, etc.



#### **Diffuse sources**

Agriculture, saltwater intrusion, storm water,

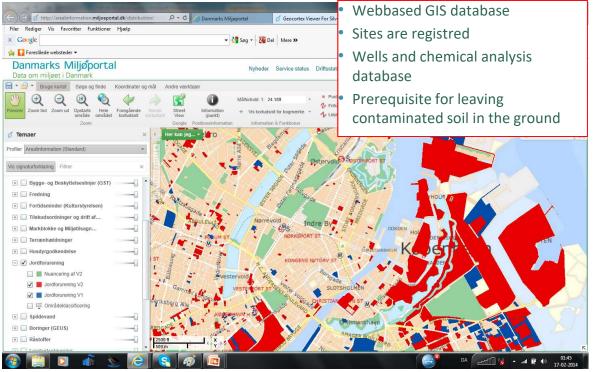







#### Registered contaminated sites in Denmark

Sites mapped as potentially contaminated in Denmark

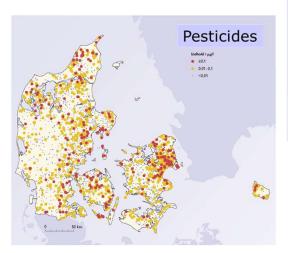

40.000 sites mapped as contaminated or potentially contaminated



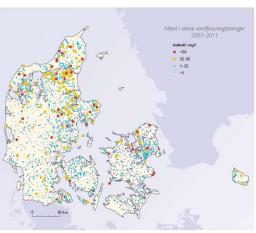




### Public internet based inventory of contaminated sites





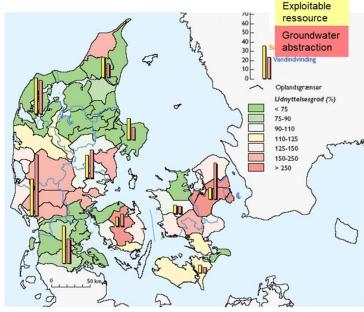




# Groundwater quality assessment - groundwater monitoring in DK

- Revised every 6th year substances in and out shifting focus – last time in 2011
- Initial focus of nutrients, then pesticides, now also on quantity – integrating surface and groundwater
- · Annual national reporting



Nitrate





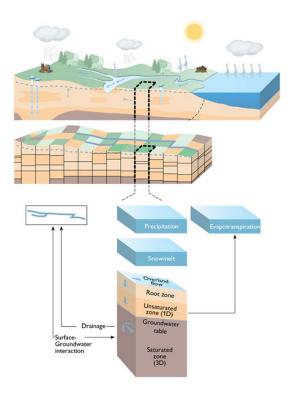


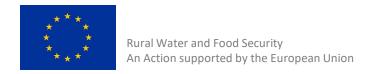

## Groundwater quantity assessment - estimation of sustainable groundwater abstraction

Sustainable groundwater abstraction has been assessed based on a national water resource model (DK model) and selected indicators



Last nationwide assessment (Henriksen et all., 2003): Exploitable groundwater ressource 1 billion m³/year



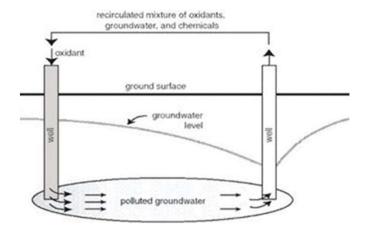




#### National Water Resource Model – DK-model

#### Objectives:

- To assess groundwater recharge at large scale /at groundwater body level
- To assess the size of the ground-water resource and the rate of exploitation taking into account land-use, climate change effects and abstraction strategy
- Assess the size of the exploitable groundwater resource
- Platform for more detailed models



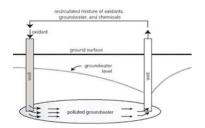




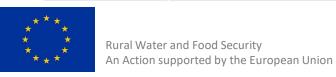

#### **Groundwater restoration measures**

- Groundwater remediation
  - Contaminant point source removal, containment or stabilization
  - In situ treatment
  - On site treatment
  - MAR
- Regulatory measures
  - Land use restrictions
  - Forestation
  - Abstraction permits
  - Pesticide bans
  - Crop changes
- Financial and other incentives
  - Pricing schemes
  - Land compensation









### **Data needed for IWM**

| Management component              | Input data                                                                                                          | Output data                                             | Technologies                                                                  |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------|
| Groundwater mapping               | Geophysical data, well data                                                                                         | Aquifer delineation                                     | SkyTEM, tTEM, well data                                                       |
| Contaminant source mapping        | Archives, maps                                                                                                      | Geographical location, contaminant plumes               | Databases, GeoEnviron (IT based reporting tool), historical archives          |
| Groundwater quantity monitoring   | Groundwater table levels, abstraction data                                                                          | Groundwater long term availability                      | TEM, Soundings technologies, pumping tests, numerical models                  |
| Groundwater quality monitoring    | Chemical and microbiological parameters well data,                                                                  | contaminant time series, trends                         | Analytical techniques, smart sampling, on line sensors, data bases            |
| Risk assessment                   | Contaminant monitoring data in abstraction wells, fate and transport contaminant characteristics, geological models | Contaminant exposure                                    | Numerical models                                                              |
| Groundwater restoration           | Soil contamination data, plume quality monitoring data,                                                             | Performance,<br>treatment efficiency,<br>treatment time | In situ and on site remediation techniques, MAR                               |
| Groundwater saving sustainability | Consumption data                                                                                                    | Water saving                                            | Smart meters, smart irrigation schemes, water saving household machines, etc. |











### Thank you for your attention!

感谢您的参与和关注!

谢谢!



